The Relationship Between Different Types of Sharps Containers and C. difficile Infections Rates in Acute Care Hospitals

Monika Pogorzelska-Maziarz, PhD, MPH
College of Nursing, Thomas Jefferson University, Philadelphia, PA

Monika Pogorzelska, PhD, MPH
Thomas Jefferson University
130 South 9th Street
Philadelphia, PA 19107
Phone #: (215) 503-5613
monika.pogorzelska@jefferson.edu

BACKGROUND

- ♦ Sharps disposal containers are ubiquitous in healthcare facilities.
- ♦ However, there is paucity of data on the potential for environmental contamination of these containers and their role in transmission of pathogens.
- ♦ The potential for sharps containers to become a source of pathogen transmission within the healthcare setting is an issue that has been raised^{1,2} but not systematically studied.
- ♦ This is especially important given that contamination of the hospital environment has been shown to be an important component of pathogen transmission.

OBJECTIVES

- ♦ To describe the use of different types of sharps containers in a national sample of hospitals.
- ♦ To assess the relationship between the use of reusable vs. single-use sharps containers and rates of *C. difficile* infections.

METHODS

- ♦ Survey linked to 2012 Medicare Provider Analysis and Review (MedPAR) dataset containing facility characteristics and *C. difficile* infection rates as identified by ICD-9 codes.
- ♦ Differences in *C. difficile* infection rates between hospitals using reusable vs. single-use sharps containers examined using bivariate and multivariable negative binomial regression models.

FINANCIAL SUPPORT AND CONFLICT OF INTEREST

Support for this study was provided by Becton, Dickinson and Company. MPM served as a consultant to Becton, Dickinson and Company on this project.

RESULTS

Hospital Character	istics, $N = 53$	39		
	N (%)		N (%)	
Geographic Region		Ownership Status		
Northeast	76 (14.1)	Non-profit	362 (67.2)	
Midwest	133 (24.7)	For profit/Physician owned	112 (20.8)	
South	217 (40.3)	Government	65 (12.1)	
West	113 (21.0)	Urbanicity		
Bedsize		Metropolitan (≥ 1 million)	281 (52.1)	
100-199	218 (40.5)	Metro (250K – 1 million)	98 (18.2)	
200-299	135 (25.1)	Metro (<250 K)	78 (14.5)	
300-499	126 (23.4)	Non-Metro	82 (15.2)	
≥500	60 (11.1)			
Teaching status			Mean (SD)	
Major + Minor	202 (37.5)	Discharges (continuous)	5208 (3572)	
None	337 (62.5)			

Multivariable analysis examining relationship between type of sharps disposal container used and <i>C. difficile</i> infection rates						
Container used and C. dijjiche init	Coeff	SE	p-value	IRR		
Single Use Sharps Container†	-0.1395	0.0474	0.003	0.870		
Geographic Region						
Midwest	0.0257	0.0697	0.714	1.026		
South	-0.0915	0.0655	0.163	0.913		
West	0.1328	0.0710	0.061	1.142		
Beds (continuous)	-0.0003	0.0001	0.001	1.000		
Ownership status						
For profit/Physician owned	-0.2377	0.0540	<0.001	0.788		
Government	-0.1313	0.0658	0.049	0.877		
Urbanicity						
Metro (250K – 1 million)	-0.1910	0.0559	0.001	0.826		
Metro (<250 K)	-0.2558	0.0622	<0.001	0.774		
Non-Metro	-0.1427	0.0659	0.030	0.867		

†Reusable is the comparison group

RESULTS

- ♦ Completed surveys received from 604 hospitals (30% response rate).
- ♦539 hospitals provided data on the type of sharps containers used in Fiscal Year 2012 (27% response rate).
- ♦ Participating hospitals were predominantly non-for-profit (67%) and non-teaching (63%).
- ♦ The majority of respondents reported their primary role was in environmental safety (56%); a third were infection preventionists (31%).
- ♦ The majority of hospital utilized reusable sharps containers (72%) in FY 2012.
- ♦Use of single-use vs. reusable sharps containers differed significantly by region, bedsize, ownership, annual discharges and urbanicity (p-values <0.05).</p>
- ♦In bivariate regression, hospitals using single use sharps containers had significantly lower rates of *C. difficile* infections vs. hospitals using reusable sharps containers (Incidence Rate Ratio [IRR] = 0.846, p-value = 0.001).
- ♦ This relationship persisted in multivariable regression (IRR = 0.870, p-value = 0.003] after controlling for other hospital characteristics.

CONCLUSIONS

- ♦ This is the first study to show a link between the use of single-use sharps containers and lower *C. difficile* infection rates and further work is needed to replicate this finding.
- ❖ Future studies should investigate the potential for environmental contamination of reusable sharps disposal containers with *C. difficile* and other micro-organisms and the role that sharps containers may play in pathogen transmission.

REFERENCES

- Neely AN, Maley MP, Taylor GL. Investigation of single-use versus reusable infectious waste containers as potential sources of microbial contamination. Am J Infect Control 2003; 31:12-7.
- 2. Runner JC. Bacterial and viral contamination of reusable sharps containers in a community hospital setting. Am J Infect Control 2007; 35:527-30.

